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Abstract. I study a random proposer multi-round bargaining over a single good with transfers. In
each round, a proposer may offer an arbitrary mechanism to determine the final allocation. If the
offer is accepted, it is implemented and the game ends; otherwise, the next round commences. When
there is a two-sided incomplete information with binary types for each player, the ex ante expected
equilibrium payoffs are unique.

1. Introduction

Division of a bargaining surplus is one of the most important and the longest-studied questions
in economic theory1. Since Nash Jr (1950), Nash (1953), and Rubinstein (1982), the literature has
developed various cooperative and strategic approaches to the problem. Nevertheless, the crucial case
of bargaining under incomplete information remains without a full and satisfactory solution. On one
hand, many papers focused on the case of bargaining with one-sided incomplete information, where all
the offers are made by the uninformed party. The assumption makes the model tractable by avoiding
signaling issues, but it is restrictive. The solution typically depends on the suport of type distribution,
with an uncomfortable difference between gap and no-gap cases. On the other hand, papers that study
two-sided incomplete information typically establish a large folk-theorem-type set of equilibria2. The
latter is due to a possibility of sustaining multiple equilibrium outcomes with punishing beliefs that
is inherent to signaling models.

This paper shows that a natural and realistic modification of a standard bargaining model has
a good solution: the payoffs are unique, simple to characterize, and continuous in the underlying
parameters, including players’ beliefs. I work with a random-proposer bargaining over a single good
with transfers, and where each player has a privately known value of the good. In each round, a
randomly selected player makes an offer. I refer to the probability of choosing a proposer as player’s
bargaining power. The model includes the possibility where all offers by one of the players. The

Date: January 31, 2024.
1VERY PRELIMINARY AND INCOMPLETE. I am grateful for comments to seminar participants at U of Waterloo
and UCL.
2If players are only able to offer simple allocations, bargaining games with both the informed and uninformed players
making offers typically have multiple equilibria (Ausubel and Deneckere 1989, Gul and Sonnenschein (1988)). The
uniqueness can sometimes can be restored by equilibrium refinements (Grossman and Perry (1986b)).
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second player accepts or rejects the offer. If the offer is accepted, it is implemented and the game
ends. Otherwise, the game moves to the next round. Players discount future payoffs.

I assume that players offer mechanisms: games, where actions and rules (i.e., outcome function)
determine the allocation of the good and transfers. This assumption is a departure from a typical
bargaining model, where players’ offers take form of a particular outcome: a decision who gets the
good, a price, etc. There are two reasons for the departure. First, offers in real-world negotiations
often take more sophisticated forms that, instead of a final allocation, propose a process to find it.
Such offers include menus of outcomes, menus of menus (for example, “you divide and I choose”),
changes to bargaining protocol, deadlines, mediation or arbitration, etc. Second, on top of improved
realism, I am motivated by a hypothesis that an expansion of the set of available offers may allow the
players to successfully address signaling issues.

This model was introduced in Pęski (2022), where I showed that, under one-sided incomplete
information case, all bargaining equilibria have the same payoffs. There are two difficulties in extending
those results to two-sided incomplete information. First, the space of actions is much larger. With
one-sided incomplete information, one can without loss of generality restrict attention to menus, or,
more generally, dominant strategy mechanisms. Such mechanisms are easy to characterize and to work
with. This restriction is not possible with two-sided incomplete information. Furthermore, because
an offer may lead to change in players’ beliefs, there is no revelation principle and a restriction to
revelation mechanism would be with loss of generality. In fact, there is no a priori upper bound on
the number of mechanism actions, even when the space of types for each player is finite. At the same
time, some details, like action labels, should not play any role.

Second, two-sided incomplete information turns players’ decisions into a fully fledged informed
principal problem with a twist. In a standard formulation (see Myerson (1983), Maskin and Tirole
(1990)), a principal proposes a feasible, incentive compatible, and individually rational allocation. The
main concern is that the (on- or off-path) proposed mechanism may affect the beliefs of an agent and
the principal and agent payoffs. For example, players may be stopped from a potentially profitable
deviation because they are afraid of punishment with beliefs, i.e., a belief update which leads to an
equilibrium of either the offer or continuation game with very unattractive payoffs. Because individual
rationality is enforced at the design stage, the agent’s decision to accept or reject the proposal is not
explicitly modeled. On the contrary, in our model, the rejection leads to continuation bargaining game
with payoffs that depend non-trivially on beliefs about both agents. When designing a mechanism,
the proposer needs not only to think about the effect of the update of beliefs about her on her payoffs,
but also about the update in beliefs about the other agent due to the equilibrium decision at the
acceptance stage.

To alleviate both problems, I restrict the attention to incomplete information with two types li < hi

for each player i. Further, in order to make the space of actions manageable, instead of explicitly
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modeling mechanisms as games, I represent them as their equilibrium payoff correspondences. More
precisely, a (derived) mechanism is a correspondence that maps belief profiles to the sets of equilibrium
payoffs in the original game. An important preliminary result is an implementation theorem which
shows which payoff correspondences can be (virtually) implemented with proper games.

Two main results provide a characterization of equilibrium payoffs in the bargaining game:

(1) In each equilibrium, each type payoffs must be (weakly) larger than their random monopoly
payoffs. The latter is defined as the probability of becoming a proposer multiplied by the
payoff that a player would receive if she owned the good and was allowed to make a single
take-it-or-leave it price offer to the other player.

(2) Assume w.l.o.g. l1 ≤ l2. As δ → 1, each equilibrium maximizes player 1’s ex ante expected
payoffs, subject to feasibility, incentive compatibility, and the constraints from part (1).

The first result is valid for arbitrary discount factors. The result determines a lower bound on equi-
librium payoffs. In some cases, including when one player has all the bargaining power, or when one
player’s type is known, this bound is sufficient, as there is only one feasible and incentive compat-
ible payoff vector that satisfies the first condition. However, under a general two-sided incomplete
information, there is a gap between random monopoly payoffs and interim efficient payoffs.

The second result says that, in equilibrium, the entirety of the gap goes towards less advantaged
player 1, i.e., the player with a lower value of the lowest type. The payoffs of player 2 are determined
uniquely. The payoffs of player 1 are determined uniquely only in the ex ante sense, i.e., in the
expectation, before player 1 learns their type. The payoff uniqueness is true only for discount factors
close to 1.

Two additional comments are in order. First, although the solution is always interim efficient, it is
not always ex post efficient. For example, if the probability of types l1 and h2 is sufficiently high, the
good sometimes goes to player 1 type l1 even if it s socially efficient to allocate it to type l2. Second,
Myerson (1984) introduced a neutral solution in order to extend the Nash bargaining solution to
environments with incomplete information. The neutral solution is the smallest solution that satisfies
three axioms imposed on the class of all bargaining problems. Because the class of bargaining problems
studied in this paper is narrower, it is difficult to verify the axioms directly. Nevertheless, the neutral
solution is equal to the outcome of the bargaining if and only if the latter is ex post efficient. In the
cases where ex post efficiency fails, the neutral solution (which is not ex post efficient as well) awards
the entire gap between interim efficient payoffs and random monopoly payoffs to player 2.

The idea of the proof behind the first result is an extension of an argument from the complete
information case: I show that if player i were to receive less than her random monopoly payoff, she
would have a profitable deviation to reject all offers of player −i and wait until she has an opportunity
to make a carefully designed counteroffer. The counteroffer has two properties: First, regardless of the
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beliefs that player −i may have about player i after seeing the counteroffer and possible rejections of
−i’s offers, if accepted with probability 1, the expected payoff from the counteroffer is sufficiently high
that each type of player i receives more than her existing payoff. Second, no matter how player −i
expects her beliefs to be updated after her acceptance or rejection decision, at least one of the positive
probability types after rejection would rather accept. As a result, any equilibrium of the accept/reject
decision of player −i must lead to acceptance with probability 1. I refer to mechanisms that satisfy
the second property as offers that cannot be refused and present a general characterization of such
offers.

The two properties of the counteroffer are related to a Strong Undominated Pareto Optimal (SUPO)
problem from Maskin and Tirole (1990). A SUPO mechanism is a solution to an informed principal
problem where the agent’s payoff offer is at least 0 due to individual rationality constraint. Unlike a
SUPO offer, the counteroffer must ensure that the other player (i.e., the counterpart of the “agent”)
receives at least the continuation game payoffs. The latter are non-zero, and more importantly, they
depend on continuation beliefs. In the language of Maskin and Tirole (1992), the belief-dependent
individual rationality constraint turns the problem into a version of informed principal with common
values. I do not know a general solution to this problem. For two types, I can construct explicit
solution. The question whether mechanisms with the required properties exist in general type spaces
beyond binary case, and whether the first result extends, remains open.

The proof of the second result is more complicated. I show that, by using a combination of various
offers that cannot be refused, player 1 can extract the entirety of the gap. The details can be found
in the paper.

This is not the first paper to use sophisticated offers in bargaining. Mechanisms as offers have been
considered in axiomatic theories of bargaining in Harsanyi and Selten (1972), Myerson (1979), and
Myerson (1984). Certain mechanisms, like menus, also appear in some work on strategic bargaining
under one-sided incomplete information. With the exception of Jackson et al. 2020, all related papers
that we are aware of work solely with two types. Sen (2000) (see also Inderst (2003)) studies a
two-type alternating offer game, where players can offer menus but not general mechanisms, and
demonstrates the existence of a unique outcome in a refinement of PBE (perfect sequential equilibrium
due to Grossman and Perry (1986a)). The equilibrium behavior depends on whether the high type
prefers her own complete information Nash payoff, or the Nash allocation of the low type. In a
similar bargaining environment, Wang (1998) studies the Coasian bargaining model with one sided
incomplete information, with the uninformed party making all the offers. He shows that, in the
unique equilibrium, the uninformed player separates the other player’s two types with an optimal
screening contract. In particular, the Coase conjecture fails, as Bob retains all power subject to the
incentive compatibility constraints. More recently, Strulovici (2017) assumes that, instead of ending
the game, any accepted offer becomes the status quo for future bargaining. In that setting, in the
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unique equilibrium, the uninformed player is unable to offer an inefficient payoff to type u′1 in order
to screen out the more extreme type u′′1 .

Clippel, Fanning, and Rozen (2022) proposes a simple two-stage strategic bargaining model that
implements neutral solution in a general class of environments with two-sided incomplete information
and arbitrary type spaces They assume that types are ex-post verifiable. The latter assumption helps
to eliminate incentive compatibility constraints, which makes a model more tractable. In contrast,
the current paper does not require ex-post verifiability.

Jackson et al. 2020 considers a general bargaining environment. Although the authors allow for
incomplete information on both sides, they make a strong assumption that the total value of bargaining
surplus is commonly known. This assumption implies that there are no incentive problems that stop
agents from truthfully revealing their information. In the unique equilibrium, the agents use menus
to implement information revelation in a single round of bargaining. The result is robust to small
perturbations of the common knowledge assumption.

2. Model

2.1. Environment. There are two players i = 1, 2 and a mediator. The mediator will have a very
specific role and for most of the paper, one can ignore them. Each player has a finite types Ti; the
main result of the paper applies to the binary type case Ti = {li, hi} ⊆ R. Players must decide on the
allocation of a single good and transfers. A social outcome is a tuple x = (q1, q2, τ1, τ2, τM ), where
qi ∈ [0, 1] is probability that player i gets the good and τi ∈ [−L,L] is a transfer. I assume that the
restriction L < ∞ is an arbitrarily large number and its purpose is to ensure that the space of social
outcomes is compact. The outcome is feasible if q1 + q2 ≤ 1 and τ1 + τ2 + τM ≤ 0 and I denote the set
of feasible outcomes as X. Given outcome x, type ti’s payoff is equal to qiti + τi. Mediator’s payoff
is equal to τM .

2.2. Payoffs. Let ∆Ti be the space of beliefs about the types. Let T = ×iTi be the space of type
profiles, and let ∆T = ×i∆Ti be the space of belief profiles. Let U = R

⋃
i

Ti be the space of payoff
vectors. Let d∆T , dU be (Euclidean) metrics on the space of belief profiles and payoff vectors.

An (ex post) allocation is a mapping χ : T → X. The allocation is incentive compatible given beliefs
p ∈ ∆T if, for each player i and type ti, si ∈ Ti,

τ (χ, ti) :=
∫
τ (χ (ti, t−i) , ti) dp−i (t−i) ≥

∫
τ (χ (si, t−i) , ti) dp−i (t−i) .

Let
U (p) =

{
(τ (χ, ti))i,ti∈Ti

∈ U : χ is incentive compatible allocation
}

be the set of payoff vectors in all incentive compatible allocations given prior p. Observe that corre-
spondence U : ∆T ⇒ U is nonempty-valued ( as 0 ∈ U (p) for each p), convex-valued, and u.h.c.
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For each payoff vector u ∈ U , each p ∈ ∆T , denote pi · ui =
∑

ti
pi (ti)u (ti). For each profile of

welfare weights Λ = (Λi (ti))i,ti
such that

∑
ti∈Ti

Λ (ti) = 1 for each i, payoff vector u is Λ-optimal
under beliefs p if

u ∈ arg max
u∈U(P )

∑
i

Λi · ui.

Payoff vector u is p-interim efficient if it is Λ-optimal for some weights Λ ≥ 0 and beliefs p. Let
Ueff (p) ⊆ U (p) denote the set of all interim efficient payoffs.

2.3. Payoff correspondences. A payoff correspondence is any u.h.c. and nonempty-valued cor-
respondence e : ∆T ⇒ R

⋃
i

Ti such that e (p) ⊆ U (p) for each p. Let E0 be the space of payoff
correspondences.

For any two correspondences e, f ∈ E0, say that e ⊆ f if e (p) ⊆ f (p) for each p.
Define an (asymmetric) distance function between payoff correspondences as:

d0 (e, f) = max
(p,u)∈e

min
(q,v)∈f

d∆T (p, q) + dU (u, v) .

A sequence of correspondences en approximates f , en ↣ f , if d0 (en, f) → 0.
Let d (e, f) = d0 (e, f)+d0 (f, e) be a metric on E0. Metric d is equivalent to the Hausdorff distance

of correspondences e, f treated as subsets of ∆T ×U . A sequence of correspondences en converges to
f , en → f , if d (en, f) → 0. The space of payoff correspondences is compact under such metric.

A payoff function is a single-valued payoff correspondence. Because each payoff function is u.h.c.,
it is also necessarily continuous. A Kakutani correspondence is a payoff correspondence that is also
convex-valued. A Michael correspondence is a payoff correspondence that can be approximated by
a sequence of payoff functions. One shows using the Michael Selection Theorem that each Kakutani
correspondence is a Michael correspondence (for example, see Pęski (2022)). Let E ⊆ E0 be the set of
Michael correspondences; it is compact under the Hausdorff distance.

2.4. Mechanisms. A game is a tuple g =
(

(Ai)i=1,2,M , ξ
)

, where Ai is a set of actions of players
i = 1, 2 and player M (mediator) and ξ : ×i=1,2,MAi → X is an outcome function. A game is finite,
if action sets are finite. In the game, players simultaneously choose actions ai ∈ Ai from (finite,
compact) set Ai and outcome ξ (ai, a−i) is implemented. A game g and a belief profile p gives rise to
a game with incomplete information. I assume that, in each such game, prior to taking their actions,
players observe a public randomization device.

Following Pęski (2022), I assume that all relevant information about the game is contained in its
payoff correspondence. In order to abstract from irrelevant details, I define a mechanism as a Michael
correspondence. An example id a correspondence of all incentive compatible allocations U . I refer
to U as the universal mechanism. For another example, for each game g and belief profile p, let
E (p|g) ⊆ U (p) denote the set of payoff vectors in Bayesian equilibria of the incomplete information
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game. If g is finite, the derived payoff correspondence E (g) is Kakutani. As a result, E (g) is a
mechanism. 3

The converse question, which mechanisms can be implemented by games, belongs to the implemen-
tation theory. Here, I show the following approximation result.

Theorem 1. Each mechanism, i.e., each Michael correspondence, can be approximated by a sequence
of payoff correspondences derived from finite games.

Theorem 1 says that each mechanism can be approximated with a finite game. In other words, the
space of Michael mechanisms is a closer of the space of payoff correspondences obtained from finite
games. The proof of the Theorem focuses on mechanisms that are payoff functions, which is sufficient
due to the definition of Michael correspondence. For arbitrary payoff function m, I construct a game
between the two players and the mediator. The sole role of the mediator is to name player’s beliefs p.
Given beliefs p, I use virtual implementation result of Abreu and Matsushima (1992) to find a game
that (approximately) implements m (p).

I say that a mechanism m is interim efficient if m ⊆ Ueff.

2.5. Derived mechanisms. Given one or more mechanisms, one can use them to create new ones.
Suppose that m is a mechanism. Then,

• For each δ < 1, let discounted mechanism δm be a mechanism obtained from mechanism m

by multiplying all payoffs in m by δ.
• Let w : ∆T → R be an arbitrary continuous function. For each such w, mechanism m+i w is

a mechanism, where, on top of m, if players beliefs are p, player −i transfers w (p) to player
i. The transfer is from player to player, regardless of true types, hence it does not affect
incentive compatibility of allocation in m.

• conm is a mechanism obtained by preceding m by an observation of a public randomization:
for each p, (conm) (p) = con (m (p)).

• Let µ ∈ ∆E be a probability distribution over mechanisms with a finite support. Define a
randomized mechanism µ so that for each p

µ (p) =
{∫

ξ (m) dµ (m) where ξ : suppµ → U is a selection ξ (m) ∈ m (p)
}
.

• A menu of mechanisms MMi (A) for a compact set A ⊆ E of mechanisms is a mechanism,
where player i observes public randomization, chooses m ∈ A and, additionally, sends a cheap-
talk message from a rich Borel space S.4 Player −i observes the choices of player i and updates

3The restriction to upper-hemi continuous and convex-valued (due to public randomization) appears already in Maskin
and Tirole (1990).
4Adding cheap talk allows to represent behavior using distributional strategies. This helps in establishing the compact-
ness of strategy space, and plays an important role in the existence proof. Adding randomization convexifies the set fo
payoffs, establishes that the payoff correspondence is Kakutani, hence Michael, which also plays a role in the existence.
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their beliefs about i. Finally, a continuation equilibrium in mechanism m is implemented. The
formal definition of MMi (A) and the proof that it is a proper mechanism are discussed in
Appendix B.

• A player i information revelation Iim is a mechanism, where player i observes public random-
ization, sends a cheap-talk message from a rich Borel space S, following which mechanism m

is implemented. Formally, Iim = MMi ({m}), i.e., information revelation game is equivalent
to a singleton menu of mechanisms.

• An informed principal with continuation m, IPi (m), is a mechanism, where, first, player i
chooses an arbitrary mechanism a ∈ E ; second, player −i chooses between mechanisms m and
a:

IPi (m) = MMi ({MM−i ({m, a}) : a ∈ E}) .

Mechanism n is interpreted as an offer made by the principal, and the choice of mechanism
m is interpreted as a rejection of the offer.

2.6. Random-proposer bargaining. Finally, I formally define a random-proposer bargaining mech-
anism B. The idea is to utilize the recursive nature of the bargaining game: In each period, a player i

is randomly chosen with probability βi =

β i = 1

1 − β i = 2
to be an informed principal with the contin-

uation game equal to the discounted random-proposer bargaining. For a given discount factor δ, let
Bδ denote the mechanism corresponding to the bargaining game. Then, it must satisfy the following
equation:

Bδ =
(
IP1

(
δBδ
))β1 (

IP2
(
δBδ
))β2

.

I define correspondences B as the largest solution to the above equations. One shows that the largest
solution is well-defined and B is a proper mechanisms.5

2.7. Comments. Equilibrium. It is instructive to compare the above definition of equilibrium payoffs
with a more standard notion of equilibrium profile. Typically, in order to define a perfect equilibrium,
one defines histories, strategies, beliefs, proposes a motion of measurability (which is an issue here
due to the large space of actions), consistency, and proceeds to define an equilibrium as a profile of
strategies that are best responses given the beliefs. The elements of such approach are contained in
the definition of an equilibrium in the menu of mechanism game described in Appendix B. There is a
key difference: Instead of characterizing strategic behavior in the continuation game, I replace it by a
continuation payoff. The approach is modular: focus on the behavior in the game at hand and leave
the continuation behavior for some other definition. One consequence is that such a definition assumes

5This follows from the following property of menus of mechanisms: Suppose that, for two compact sets of mechanisms A
and B, there exists a measurable function ϕ : A → B such that for each m ∈ A, m ⊆ ϕ (m). Then, MMi (A) ⊆ MMi (B).
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that the one-shot-deviation principle always holds. Another consequence is that the definition does
not require that the continuation behavior in the mechanism is measurable with respect to the history
in the game at hand, as long as the continuation payoffs and beliefs at the beginning of the mechanism
are measurable.

The notion of consistent beliefs requires that, given player’s strategy, with probability 1, the beliefs
are updated according to the Bayes formula and, otherwise, the beliefs about player i’s behavior
change only following the action of player i. (So, for example, off-path behavior of player −i does
not affect the beliefs about player i.) The latter restriction is satisfied by notions like sequential
equilibrium, at least in games where such a definition exist.

The definition of the equilibrium in the bargaining game is derived from the one just described,
where, at each stage, I interpret (a) the continuation game as a mechanism, and (b) the action choice,
as a choice of a mechanism in the menu of mechnisms.

Existence: The existence of an equilibrium in the menu of mechanisms is an issue due to the
large action space. The proof follows the same ideas as the proof in Pęski (2022), henceforth it is
omitted. I only point out is that, in one of the steps of the existence proof in Pęski (2022), I showed
that Kakutani mechanisms can be approximated by payoff functions. Because this paper deals with
Michael correspondences, the approximation is guaranteed by definition.

Mechanisms vs games: In the model, players propose mechanisms. The latter correspond to limits
of finite games. There is a technical reason for doing so: the approach of this paper ensures that the
space of players available is appropriately compact, with all the benefits it creates, the most important
of all is the existence of equilibrium.

More importantly, for the main results of this paper, working with the limit games is sufficient.
This is because the main results are negative - they show that an equilibrium with some payoffs cannot
exist because some player would have a profitable deviation. The existence of a profitable deviation in
the form of an abstract mechanism implies that at least one of the approaching games is a profitable
deviation as well.

The limit approach is more problematic for the existence of equilibrium. This existence arguments
that this paper relies on do not guarantee that the equilibrium choices involve mechanisms that
can be implemented by games. There are few ways to address the issue: either look for stronger
implementation results, or weaken the definition of equilibrium to an ε-equilibrium-like concept. The
latter approach is standard in games with non-compact action spaces. Both solutions go beyond the
scope of the current paper and are left for future research.

Environment: The single good environment described in Section 2.1 is very specific. Results of
Section 5 apply much more widely. The quasi-linearity in transfers is only used in constructions
of mechanisms like a +i ε for small ε > 0. But the assumption is not necessary, and the results
apply to all environments where any mechanism can be approximated by a mechanism that is a
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strict improvement for all types of a given player. The results of Section 4 do not apply beyond the
single-good-with-transfers environment.

Commitment: An important assumption of the model is that once the mechanism is offered and
accepted, the players are committed to its implementation. Although this assumption is shared by
the Coasian bargaining literature, and also the more recent literature on dynamic mechanism design
with limited commitment (e.g., Skreta (2006), Doval and Skreta (2018), Liu et al. (2019)), I also allow
for a wider range of mechanisms than this literature typically considers. For example, an agreement
on negotiation protocol may force players to restrict their future options, set a deadline, or choose
an ex-post inefficient outcome. In other words, I allow players to commit jointly. This approach to
commitment is applicable in situations in which such a commitment is possible, either because the
nature of dividing the surplus makes it impossible to divide it again, renegotiation is costly, or the
agreement is enforced by an arbitrator or a court.

To make the point about commitment starker, consider a special case of the model in which only
player 1 makes all the offers. As I explain below in section 3.2, such a model is equivalent to informal
principal problem, where player 1 offers to selll the good to player 2 at the monopoly price that
maximizes player 1’s type payoff. If there is a complete information about type fo player 1, this result
can be contrasted with the Coase conjecture, which predicts that the uninformed player sells at the
price equal to the lowest possible value of the informed player, and the equilibrium is efficient. In
the bargaining literature, the Coase conjecture has been typically associated with the “gap case” of
the durable monopoly problem, with offers made only by the uninformed party (Gul, Sonnenschein,
and Wilson (1986)), but the Coasian forces play a role also in alternating-offer models (Gul and
Sonnenschein (1988)).

3. Benchmarks

In this section, I describe three relevant benchmarks.

3.1. Complete information. Assume that both player types are known, and, w.l.o.g., t1 < t2 are
known. In such a case, the solution to the bargaining model is well-known. In equilibrium, the higher
value player 2 gets the good and pays β1t2 to player 1. The resulting payoffs of player i are equal to
βit2. In particular, the allocation is efficient, and the payoffs depend only on the type of the higher
value player.

It is worthwhile to remind the argument behind this observation. Suppose that the lowest equi-
librium payoff of player i is xit2 for some xi < βi. Because the sum of payoffs available to players
cannot be larger than t2, player −i, if not a proposer, will always accept the offer that gives him at
least δ (1 − xi) t2. Consider a player i strategy, where the player always rejects any offer of player
−i, and whenever a proposer, always offers δ (1 − xi) t2 to player −i and (1 − δ (1 − xi)) t2 for herself.
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Because her offer will be accepted, such a strategy guarantees her the expected payoff of at least

βi

∑
t≥0

(δ (1 − βi))t [1 − δ (1 − xi) t2] = xit2 + (βi − ti)
1 − δ

1 − δ + δβi
t2 > xit2.(3.1)

The last inequality leads to the contradiction with the definition of equilibrium.

3.2. One-sided bargaining power (informed principal problem). When βi = 1, player i makes
all the offers. The model becomes equivalent to an informed principal problem with private val-
ues.Maskin and Tirole (1990) show that each player i type has unique equilibrium payoff equal to the
monopoly payoff player i would receive if she owned the good and could make a single take-it-or-leave-it
offer to player −i:

(3.2) M (ti; p−i) = max
τ

p−i (t−i ≤ τ) ti + (1 − p−i (t−i ≤ τ)) τ.

I refer to M (ti; p−i) as a monopoly payoff. Player −i’s payoff for some types is equal to 0; if −i type
is strictly above the monopoly price of some types of player −i, his payoff is strictly above above 0.
The allocation that induces such a payoff is typically not ex post efficient, but it is ex ante efficient.

Because player i’s payoff is exactly the same as if her type was known, Maskin and Tirole (1990)
conclude that incomplete information about informed principal type does not matter in private values,
transferable utility case. It is worthwhile to emphasize that the definition of private value environment
includes the fact that the payoffs after player −i rejects player i’s offer are equal to 00, or, more
generally, do not depend on beliefs about i’s types. This property of static informed principal models
is not going to be satisfied in the informed principal with continuation mechanism IP , where, in
general, continuation payoffs depend on beliefs about each player.

If δ = 1, there is only one round of offers. If player i type ti is chosen to be a proposer, she expects
a payoff of M (ti; p−i). Ex ante, she expects to get at least βiMi (ti; p−i). I refer to this payoff as a
random monopoly payoff. (Her equilibrium payoff may be higher if she expects non-zero payoff if she
is not the proposer.)

3.3. One-sided incomplete information. Suppose that type ti of player i is known. Pęski (2022)
showed that the equilibrium payoffs are unique. Player i is equal to her random monopoly payoff
βiMi (ti; p−i). Player −i type t−i receives at least β−iM−i (t−i; pi) = β−i max (ti, t−i), and the payoffs
are equal to the random monopoly payoff for all types below the monopoly price of player i. The
proof extends the complete information argument by constructing a class of mechanisms aj (x) for
each player j and each x such that, for each x,

• if accepted, the payoff of each type tj in mechanism aj (x) is at least xMj (tj ; p−j),
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• if each type of player j expects to get at least xMj (tj ; p−j) in equilibrium, then, in any
equilibrium, player −j will always accept mechanism aj (1 − δ (1 − x)).

The second property is a counterpart of a simple observation in the complete information case. Ex-
tending it further to two-sided incomplete information is the key step of the proof of the first main
result, Theorem 2.

4. Main results

In this section, I state the two main results of the paper. From now on, assume that each player
has two types, Ti = {li, hi}. W.l.o.g. assume that l1 ≤ l2.

In the rest, the following notation is used: for each x ∈ [0, 1], I refer to x1 = x as a “player 1’s
share” and to x2 = 1 − x as “player 2’s share”. Abusing notation, I denote the probability of high
type as pi = pi (hi).

The first result shows, in each equilibrium, for each discount factor, each type of each player gets
at least their random monopoly payoff.

Theorem 2. For each δ < 1, each u ∈ Bδ (p), each player i, each ti, ui (ti) ≥ βiMi (ti; p−i).

Theorem 2 provides lower bounds on equilibrium payoffs. In some cases, the lower bounds are
sufficient to determine the equilibrium payoffs: If either one of the players i has all the bargaining
power (βi = 1), or her type is known (pi ∈ {0, 1}), or when h1 > h2, there is a unique payoff vector
that satisfies the payoff constraints. Such payoffs can be guaranteed in the following mechanism:
player i gets the good with a probability equal to the probability of being chosen a proposer βi and
is allowed to make a single take-it-or-leave-it sell offer to player −i. (If such a mechanism is played,
the low types gets exactly their random monopoly payoff; the high type may get a higher payoff if the
opponent gets the good and sells it below the high type valuation.)

The proof of Theorem 2 follows the same logic as the argument described in Section 3.3. The
main difficulty is in construction of mechanisms a1 and a2 with the required two properties. The
construction is presented in Section 4.

I refer to mechanisms that satisfy the second property listed in Section 3.3 as mechanisms that
cannot be refused given some continuation mechanism (see Section 5.2 for details). In particular,
for each i, mechanism ai is a mechanism that cannot be refused by player −i given the continuation
bargaining game.

When the lower bounds from Theorem 2 are not sufficient to determine payoffs, there is a gap
between random monopoly payoffs and interim efficiency. To quantify such a gap, let

(4.1) E (p, β) = max
u∈U(p)

p1 · u1 st. ∀i,ti
ui (t) ≥ βiMi (ti; p)
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denote the maximum expected payoff player 1 can get in an incentive compatible allocation that
ensures that each type of player 2 gets his random monopoly payoff. Then, the gap is equal to

(4.2) Gap (p, β) = E (p, β) − p1 · β1M1 (.; p2) .

Section 5.4 provides a precise characterization of the gap. The gap is continuous in the parameters
of the model, including beliefs and bargaining power. If h2 > h1 and both players have non-0trivial
bargaining power, i.e., βi ∈ (0, 1), the gap is maximized at interior beliefs. I show that the gap satisfies
the following estimate:

Gap (p) ≤ 6.25% · h2 for all p.

Mechanism a2 is a mechanism that gives the entirety of the gap to player 1. There are other
mechanisms with such property.

The second main result of this paper shows that, in equilibrium, the entirety of the gap goes to
player 1:

Theorem 3. For each p, limδ←1 supu∈Bδ(p) |E (p, β) − p1 · u1| = 0.

The characterization in Theorem 3 is tight enough to uniquely determine the allocation of the good
(i.e., the probability with which players get the good, conditionally on their types), player 2 payoffs,
and, for a generic subset of the parameter space, payoffs of player 1. In other cases, player 1 payoffs
are determined up to their ex ante value.

In the proof, I show that, as δ → 1, for each ε > 0, player 1 has a strategy of form “reject all
offers of player 1 and present a carefully designed counteroffer” that ensure that the player 1 gets
all but, at most ε fraction of the gap. If given an opportunity to propose an offer, depending on
the anticipated equilibrium continuation beliefs and her type, player 1’s offer take form of one of two
two mechanisms: a1 and a2 − w. The former is an offer that, as I explain above, cannot be refused
given the continuation game. The latter mechanism is a version of mechanism a2 but with additional
payments w to player 1 to make a2 an offer that cannot be refused by player 2. I show that, as δ → 1,
the payments w needed can be made arbitrarily small. Asymptotically, a2 is also a mechanism that
cannot be refused. Thus, given the above comment, player 1 gets the entirety of the gap.

5. Proofs

In this section, I introduce main techniques and ideas behind the proofs of Theorems 2 and 3.

5.1. Derived mechanisms. I start with characterization of payoffs in two derived mechanisms:
information revelation and menu of mechanisms (see Section 2.5). For each mechanism a, define
its support as Sa = {(v, q) : v ∈ a (q)}.
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Information revelation: For each probability distribution µ ∈ ∆ (U × ∆T ), let

pi (µ) =
∫
qdµ (v, q)

u (ti|µ) = 1
pi (ti|µ)

∫
vq (t) dµ (v, q) for each type ti ∈ Ti,

Say that distribution µ is i-splitting if

• µ only reveals information about player i types: there is p−i such that µ ∈ ∆ (U × ∆Ti × {p−i})
and

• revelation of information is an equilibrium behavior: µ ∈ ∆ ({v, q} : vi ≤ ui (q)).

A standard lemma is presented without a proof:

Lemma 1. For each mechanism a,

Ii (a) (p) = {u (µ) : µ ∈ ∆Sa, µ is i-splitting, and p (µ) = p} .

Menu of mechanisms: In order to characterize payoffs in menus of mechanisms, the following two
definitions will be useful. First, consider the following order on payoff vectors for player i. For each
prior pi ∈ ∆Ti, let u ≤pi

u′ (resp. u <pi
u′) if and only if all strictly positive probability types of

player i prefer payoffs u′ to u: u (ti) ≤ u′ (ti) for each ti st. p (ti) > 0 (resp. if, additionally, at
least one of the inequalities for a strictly positive type is strict). In other words, ≤pi

is a standard
vector comparison but applied only to payoffs associated with player i types that have strictly positive
probability under pi.

Second, for each mechanism m, each p and each player i, define the upper contour of m:

Uim (p) = {u ∈ U (p) : u′ ≤pi u for some qi ∈ ∆Ti and u′ ∈ m (qi, p−i)} .

Uim(p) contains incentive compatible payoff vectors u in whcih player i has weakly higher payoffs
than in some payoff vector u′ taken from mechanism m, possibly, for different beliefs about player i
type. An interpretation is that Uim is the set of payoffs resistant to such a veto threat by player i,
who may reject current allocation and force mechanism m instead.

Lemma 2. For each player i, each compact set of mechanisms A,

MMi (A) ⊆ con
(
Ii

( ⋃
m∈A

m

)
∩
⋂

m∈A

Uim

)
.

The Lemma shows that each payoff in the menu of mechanisms A (a) can be obtained in an
information revelation game where the continuation payoff belongs to one of the mechanisms and (b)
it must also belong to the upper contour of any mechanism in A.
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Proof. Let S be the space of cheap-talk announcements. Suppose that u ∈ MMi (A) (p). Assume
first that (u, p) is equilibrium tuple. Then, there exists α ∈ ∆ (A× S) and measurable mappings
u, q : A× S →

⋃
m∈A m such that u (m, s) ∈ m (q (m, s)) for each m ∈ A and s ∈ S and such that

u =
∫
u (m, s) dα (m, s) and u (t) ≥ u (t|m, s) for all m, s and pi-almost all ti.

This implies that u ∈ Ii

(⋃
m∈A m

)
and that u ∈ Uim for each m ∈ A.

If (u, p) is an equilibrium tuple with randomization device, then the above claim applies to all tuples
in the support of randomization. Hence, u is a convex combination of elements from sets Ii

(⋃
m∈A m

)
and Uim for each m ∈ A. □

5.2. Offers one cannot refuse. A proposer contemplating making an offer will have two concerns:
what will the other side think about her after seeing her offer, and how the offer will be treated. I
deal with the second concern first.

Because delay is inefficient, other things equal it would be beneficial to make offers that will not be
refused. In order to design such offers, consider a mechanism approval game where player i chooses
between mechanism m (“approval”) and mechanism n (“rejection”). Ignoring public randomization
and cheap-talk, any decision by player i can be represented by continuation uA ∈ m

(
pA
)

and uR ∈
n
(
pR
)
. If rejection occurs in equilibrium with a positive probability, it must be that each pR-positive

probability type receives (weakly) higher payoff after rejection than after acceptance, uR ≥pR uA.
The goal of the next definition is to exclude such a possibility:

Definition 1. Mechanism m is an offer that player i (resp., strictly) cannot refuse given mechanism
n, if for each p−i, each pi, qi, each u ∈ m (pi, p−i), each v ∈ n (qi, p−i), there is a type ti such that
qi (ti) > 0 and ui (ti) ≥ vi (ti) (resp., ui (ti) > vi (ti)).

Lemma 3. Suppose mechanism m is an offer that player i strictly cannot refuse given mechanism n.
Then, for each p,

MMi ({m,n}) (p) ⊆ con (Ii (m)) (p) .

Proof. By Lemma 2, it is enough to show that Ii (m ∪ n) (p) ∩ Uim (p) ⊆ Iim (p). Take u ∈
Ii (m ∪ n) (p) ∩ Uim (p). Let α ∈ ∆ ({m,n} × S) be an equilibrium strategy and ux,s, qx,s

i payoffs
and beliefs ux,s ∈ x (qx,s

i , p−i) for x = m,n supporting u as an equilibrium of the revelation game
Ii (m ∪ n),

Suppose that u /∈ Ii (m) (p). Then, α (n) > 0 and u (t) = un,s (t) for a α-positive probability signals
s and qn,s

i -all types t. It follows that u ≤qn,s
i

un,s. There exists signal s such that suppqn,s
i ⊆ supppi

(in fact, the support condition must be satisfied for probability 1 signals). Because u ∈ Uim (p), there
exists q′i ∈ ∆Ti and u′ ∈ m (q′i, p−i) such that u′ ≤pi

u. Together with the choice of s, I obtain
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that u′ ≤qn,s
i

u, and, by transitivity, u′ ≤qn,s
i

un,s. But the latter contradicts the assumption about
m.Hence, u ∈ Ii (m) (p). □

The information revelation game on the right-hand side appears due to inclusion of cheap-talk in
the definition of menu of mechanisms game. Its effect disappears for mechanisms that are closed with
respect to revelation of information by player i: Ii (m) = m. The convexification is due to public
randomization device observed before player i make a choice. The effect of randomization disappears,
and the bound becomes tighter, when Ii (m) is a payoff function (i.e., single-valued correspondence).

Lemma 4. Suppose that A is a finite set of offers that player −i cannot refuse given n. Then,

IP (i, n) ⊆ con
(⋂

a∈A

Ui (con (I−i (a)))
)
.

Proof. For each a ∈ A, each ε > 0, find a sequence of payoff functions ma,ε,n ↣ a+i ε m
a,ε,na+−i ε.

For sufficiently high n (a, ε) , it must be that ma,ε,n(a,ε) is an offer that player i strictly cannot refuse
given mechanism n and it is at least ε-distant from a. (Otherwise, one obtains a contradiction with the
definition of convergence and upper hemi-continuity of a.) Let Bε =

{
ma,ε,n(a,ε) : a ∈ A

}
. Because

each mechanism m ∈ Bε is a payoff function, conm = m. By the definition of the informed principal
mechanism and Lemma 2,

IP (i, n) ⊆ con
( ⋂

b∈Bε

Uib

)
↣ con

(⋂
b∈A

Uib

)
.

□

5.3. Random monopoly payoffs. This section presents the proof of Theorem 2. The first result
constructs a class of helpful mechanisms. For each player i and each x, define mechanism

Ai,x (p) = {u ∈ U (p) : ui ≥ xMi (.|p−i)} .

Mechanism Ai,x consists of all payoff vectors where player i receives at least her x-random monopoly
payoffs.

Lemma 5. For each player i, each x, there exists a family of mechanisms
{
ai (x) : x ∈ [0, 1]

}
with

the following properties: for each x

(1) ai (x) ⊆ Ai,x,
(2) ai (x) is an offer player −i cannot refuse given Ai,x,
(3) ai (x) is closed with respect to revelation of information for player i: Ii

(
ai (x)

)
= ai (x).

Additionally, for each type t1 of player 1, payoffs a2
1 (t1;x; p1, p2) of this type under mechanism a2 (x)

are convex in p1.



BARGAINING WITH MECHANISMS: TWO-SIDED INCOMPLETE INFORMATION 17

The next result is the key step of the proof and it applies to any class of mechanisms a (.) with the
above properties.

Lemma 6. Suppose that for some x < βi, Bδ ⊆ Ai,x and that a (.) is a class of mechanisms with the
properties from Lemma 5. Then, for each y < 1 − δ (1 − x) =: x(δ),

MM−i

(
a (y) , δBδ

)
⊆ a (y) .

Proof. Notice first that δBδ is weakly (−i)-dominated by Ai,x(δ) . Indeed, let m be a mechanism, where
agent i is given the monopoly power: she or he owns the good and can sell it at a price chosen by them.
For each u ∈ Bδ (p), construct a vector u′ = (1 − δ)m (p) + δu. Then, u′ ∈ Ai,x(δ) and u′−i ≥ δu−i.

Next, notice that for each y < x(δ), ai (y) > ai (x)6, which implies that ai (y) is an offer player −i
cannot refuse given Ai,x(δ) , and, as an implication, ai (y) is an offer player −i cannot refuse given δBδ.
The result follow from Lemma 3. □

Let
x0 = sup

{
x ≥ 0 : Bδ ⊆ Ai,x

}
be the largest bound on x that ensures that player i gets at least her x-random monopoly payoffs in
any equilibrium of the bargaining game. Suppose that x0 < βi. Consider a strategy, where player
i rejects any offer of player −i and, whenever given an opportunity to propose, she offers ai (y) for
some y < x

(δ)
0 and some ε > 0. Because of Lemma 6, if she becomes the proposer for the first time in

period t, her payoff is at least equal to
yMi

(
.|qt
−i

)
,

where qt
−iare updated beliefs about player −i’s types. The expected payoff is equal to

βi

∑
t≥0

(δ (1 − βi))t
y EMi

(
.|qt
−i

)
≥βi

∑
t≥0

(δ (1 − βi))t (1 − δ (1 − x0)) EMi

(
.|qt
−i

)
−
(
x

(δ)
0 − y

)
max (h1, h2)

where the inequality follows from the fact that monopoly payoffs are not larger than the largest value
in the game and the expectation is over beliefs about player −i types. Because monopoly payoffs are
convex in the beliefs, and the Bayes formula implies that E qt

−i = p−i, the above is not smaller than

≥ x0Mi (.|p−i) + (βi − x0) 1 − δ

1 − δ + δβi
Mi (.|p−i) −

(
x

(δ)
0 − y

)
max (h1, h2) .

By taking y sufficiently close to x(δ), player i’s strategy ensures that her payoffs strictly larger than
x0Mi (.|p−i). The contradiction with the choice of x0 < βi demonstrates that x0 ≥ βi and concludes
the proof of Theorem 2.

6More precisely, it is true unless player −i type is t−i = 0 and beliefs are pi (ti = 0) = 1. This case would have to be
dealt with separately. For now, assume that li > 0.
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5.4. The Gap. In this section, I present the characterization of the gap (4.2). I divide the analysis
into two relevant cases:

Case l1 < l2 < h1 < h2. In order to describe the maximum payoffs of player 1 subject to random
monopoly payoff constraints, it is necessary to divide the space of belief profiles into few regions. The
first division corresponds to changing solutions to the monopoly problem (3.2). Let

p∗2 = l2 − l1
h2 − l1

be the threshold belief over type h2 at which type l1 is indifferent between two monopoly prices τ = l2

and τ = h2. All other types have a single belief-independent monopoly price.
Let

p∗1 (x) = x

x+ (1 − x) h2−h1
h2−l2

be a belief threshold such that for, p1 ≥ p∗1 (x), the following allocation is incentive compatible:

q1, τ1 (t) =



0, xl2 t = l1l2

0, xh2 t = l1h2

1,− (1 − x)h1 t = h1l2

0, xh2 t = h1h2

.

Let

fi (pi;x) = min
(

pi

p∗i (x) ,
1 − pi

1 − p∗i (x)

)
for each i, and f (p;x) =

∏
i

fi (pi;x) ,

where we take p∗2 (x) = p∗2. Finally, let

∆ (x) = x (1 − x) h2 − l2
h2 − l1

h2 − h1

h2 − xl2 − (1 − x)h1
(l2 − l1) .

Proposition 1. Suppose l1 < l2 < h1 < h2. The expected (ex ante) payoffs of player 1 in such
allocations are equal to

E (p, x) = p1 · (xM1 (p2)) + f (p;x) ∆ (x) .

The above payoffs are attained by mechanism a2 (x) with payoffs described in Table 1. The figure
below the Table shows the division of the space of belief profiles into three zones. The right-most
column describes the optimality coefficients which make the allocations in mechanism a2 (x) Λ-optimal
for a given belief profile.

Case l1 < h1 < l2 < h2. Additionally to the belief threshold p∗2 defined in the previous case, let

p∗∗2 = l2 − h1

h2 − h1
< p∗2
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type h2 payoffs q1 (l1, h2) q1 (h1, h2)
type l2 payoffs q1 (l1, l2) q1 (h1, l2)

type l1 payoffs type h1 payoffs

Λ1 (h1)
Λ2 (h2)

A

(1 − x)M2 (h2) 0, xh2 0, xh2

(1 − x)M2 (l2)
x− (1 − x) p1

1−p1
h2−h1
h2−l2

,
(1 − x) p1

1−p1
h2−h1
h2−l2

l1

1,
− (1 − x)h1 + (1 − x) h2−h1

h2−l2
(l2 − l1)

xM1 (l1) xM1 (h1)
+ (1 − x) (1 − p2) h2−h1

h2−l2
(l2 − l1)

p1

p2 − (1 − p2) p∗
2

1−p∗
2

B

(1 − x)M2 (h2)
− (1 − x) p1 (h2 − h1)
+x (1 − p1) (h2 − l2)

0, xl2
0,
xh2 + (1 − x) (h2 − h1)

(1 − x)M2 (l2) 0, xl2 1,− (1 − x)h1

xM1 (l1) xM1 (h1)
+ (1 − x) p2 (h2 − h1)

p1
0

C
(1 − x)M2 (h2) 0, xh2 0, xh2
(1 − x)M2 (l2) 0, xl2 1,− (1 − x)h1

x ((1 − p2) l2 + p2h2) xM1 (h1)

p1
p2

0 1

1

p∗1 (x)

p∗2

A

B

C

Table 1. Payoffs, good allocation, and transfers in mechanism a2 in case l2 < h1.

be the probability at which type h1 is indifferent between between monopoly prices τ = l2 and τ = h2.
All other types have a single (belief-independent) monopoly price.

Let
p∗1 (x) = x.
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Let f1 (p1;x) be defined as in the previous case and let

f2 (p;x) = max
(

0,min
(
pi − p∗∗2
p∗2 − p∗∗2

,
1 − p2

1 − p∗2

))
.

Let f (p;x) = f1 (p1;x) f2 (p;x) be as above. Finally, let

∆ (x) = x (1 − x) (h2 − l2) (h1 − l1)
h2 − l1

.

Proposition 2. Suppose l1 < h1 < l2 < h2. The expected (ex ante) payoffs of player 1 are equal to

E (p, x) = p1 · (xM1 (p2)) + f (p;x) ∆ (x) .

The gap payoffs are attained by mechanism a2 (x) with payoffs described in Table 2.

5.5. Proof of Theorem 3. This section contatins the proof of Theorem 3. To simplify the notation,
I write ai (p), instead of ai

(
p|βδ

)
for i = 1, 2, f1 (p1) instead of f1

(
p|β(δ)), p∗1 instead of p∗1

(
β(δ)),

and ∆ instead of ∆
(
β(δ)), etc. The following properties of a2 (x) mechanism will play a role in the

proof:

• Mechanisms a1 and a2 are closed with respect to revelation of information by player 2.
• For each p1, payoffs a2

1 (ti|p1, p2) of each type t1 player 1 are convex in p2.
• Player 1 payoffs in mechanism a2 (as described in Tables 1 and 2) are equal to

u1 (l1) = β(δ)M1 (l1|p2) + 1p1<p∗
1

f1 (p1)
p1

f2 (p2) ∆,(5.1)

u1 (h1) = β(δ)M1 (h1|p2) + 1p1>p∗
1

f1 (p1)
1 − p1

f2 (p2) ∆,

which implies that

(5.2) p1 · a2
1 (p) = E1

(
p1, β

(δ)
)

= p1 · β(δ)M1 (.|p2) + f1 (p1) f2 (p2|x) ∆ (x) .

To quantify the distance between E1
(
p1, β

(δ)) and player 1’s expected equilibrium payoffs, let

w0 = max
p,u∈Bδ(p)

1
f1 (p1)

(
β

β(δ)E1

(
p1, β

(δ)
)

− p1 · u1

)
.

Then, for each belief profile p and each equilibrium payoff u ∈ Bδ (p), it must be that

p1 · u1 ≥ β

β(δ)E1

(
p1, β

(δ)
)

− w0f1 (p1) ,

and there is a sequence of equilibrium payoffs un ∈ Bδ (pn) such that pn
1 · un

1 converges to the the
right-hand side.
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A

(1 − x)M2 (h2) 0, xh2 0, xh2

(1 − x)M2 (l2) x−p1
1−p1

,
(
x− x−p1

1−p1

)
l1 1,− (1 − x) l1

xM1 (l1) xM1 (h1)
+ (1 − x) (1 − p2) (h1 − l1)

p1,
p2 − (1 − p2) p∗

2
1−p∗

2

B

(1 − x)M2 (h2) + (x− p1) (h2 − l2) 0, xl2 0, xh2 + (1 − x) (h2 − l2)
(1 − x)M2 (l2) 0, xl2 1,− (1 − x) l2

xM1 (l1) xM1 (h1)
+ (1 − x) (p1h2 + (1 − p2)h1 − l2)

p1,
p2 − (1 − p2) l2−h1

h2−l2

C
(1 − x)M2 (h2) 0, xh2 0, xh2
(1 − x)M2 (l2) 0, xh1 1,−x 1−p1

p1
h1

x ((1 − p2)h1 + p2h2) xM1 (h1)

p1,
0

D
(1 − x)M2 (h2) + x (h2 − l2) 0, xl2 0, xl2
(1 − x)M2 (l2) 0, xl2 0, xl2

xM1 (l1) xM1 (h1)

p1,
0

0 1

1

p∗1 (x)

p∗2

p∗∗2

A

B

C

D

Table 2. Payoffs, good allocation, and transfers in mechanism a2 in case h1 < l2.

Next, we choose the smallest payment scheme w (p1) such that mechanism aw = a2 +2 w cannot
be refused by player 2 given the continuation bargaining game δBδ. For this purpose, for each p1, let

w (p1) = min
{
w : ∀p2,u∈δBδ(p1,p2)∃t2:p2(t2)>0

(
1 − β(δ)

)
M2 (t2|p1) + w > u (t2)

}
.
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The above formula and the definition of mechanisms that cannot be refused implies that aw is such a
mechanism. The key step of the proof is the following result proven in the next subsection:

Lemma 7. There exists w∗0 (δ) > 0 and ε (δ) > 0 such that limδ→1 w0 (δ) = 0 and if w0 ≥ w0 (δ),
then, for each p such that p1 ∈ (0, 1), each u ∈

(
U1a

w ∩ U1a
1) (p),

p1 · u1 ≥ p1 · a2
1 (p) − β(δ)

β
w0f1 (p1) + ε (δ) .

Corollary 1. The above inequality holds for each u ∈ IP
(
i, δBδ

)
(q1, p2) for each q1 ∈ (0, 1).

Proof. The claim follows from the definition of operator U1 and from Lemma 4. □

Take any equilibrium v ∈ Bδ (p) such that

p1 · v1 <
β

β(δ)E1

(
p1, β

(δ)
)

− w0f1 (p1) + β

β(δ) ε (δ) .

Consider a strategy, where player 1 never accepts any offer from player 2, and, instead, awaits the
possibility of playing the informed principal with continuation game δBδ. By the time player 1 becomes
a proposer, beleifs may change. First, due to possibly out-of-equilibrium updating, player 2 beliefs
may change to q1. Second, because of player 2 equilibrium revealation of information, player 1 beliefs
may get updated to p′2. For the latter, the martingale property ensures that Ep2 p

′
2 = p2. The expected

payoff from such a strategy is not smaller than

p1 · u1 ≥
∑
t≥0

β (δ (1 − β))t

[
Ep2 p1 · a2

1 (p1, p2) − β(δ)

β
w0f1 (p1) + ε (δ)

]

≥ β

β(δ) p1 · a2
1 (p1, p2) − w0f1 (p1) + β

β(δ) ε (δ) > p1 · v1.

But the last inequality contradicts the choice of v as an equilibrium outcome.

5.6. Proof of Lemma 7. I start with a preliminary estimate:

Lemma 8. There exists a constant C0 that depends only on the payoff parameters of the model and
a function ψ (p) st. ψ (p∗1) = 0 and |ψ (p1)| ≤ C0 (1 − δ) f1 (p1) such that for each p,

w (p1) ≤ δw0f1 (p1) + ψ (p1) .

Proof. Take any u ∈ δBδ (p). Then, u′ = 1
δu ∈ Bδ (p). Function

ψ (p) = δp1 · a2
1 (p|β) − δ

β

β(δ) p1 · a2
1 (p)
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Figure 5.1. Mechanisms a1(green), a2 (grey), and aw − w (blue). For each q1, the
green shaded area describes payoffs u1 that 1-dominate u′ ∈ a1 (q1, p2) and the blue
shaded area contains payoffs that dominate u′ ∈ aw (q1, p2).

has the required properties (it can be verified through direct calculations based on formulas from
Tables 1 and 2.) The definition of w0 implies that

p1 · u′1 ≥ p1 · β

β(δ) a
2
1 (p) − w0 (p1) f1 (p1)

≥ p1 · a2
1 (p|β) −

[
w0 (p1) f1 (p1) + 1

δ
ψ (p)

]
,

Because a2 (p|β) is a solution to the problem of maximizing p1 · u1 subject to the random monopoly
payoff constraint for player 2, there exists t2 such that

u′2 (t2) ≤ (1 − β)M2 (t2|p1) + w0 (p1) f1 (p1) + 1
δ
ψ (p) .

Due to 1 − β(δ) = δ (1 − β), the above implies that

u2 (t2) = δu′2 (t)

≤
(

1 − β(δ)
)
M2 (t2|p1) + δw0 (p1) f1 (p1) + ψ (p) .

Because u and p were arbitrary, the last inequality and the definition of payment scheme w1 (.) implies
that, for each p1, w1 (p1) < δw0f1

(
p1|β(δ))+ ψ (p).

I move to the proof of Lemma 7. Take u ∈ U1a
w (p) ∩ U1a

1 (p). Because u ∈ U1a
1 (p),

(5.3) u1 (t1) ≥ β(δ)M1 (t1|p2) .
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Because u ∈ U1a
w (p), there is q1 and u′ ∈ aw (q1, p2) such that u1 (t1) ≥ u′1 (t1) for each t1. Let

g0 (p1, q1) =


p1 q1 < p∗1

f1 (p1) q1 = p∗1

1 − p1 q1 > p∗1

and g1 (p1, q1) =


p1
p∗

1
q1 ≤ p∗1

1−p1
1−p∗

1
q1 ≥ p∗1

.

I will show that □

p1 · u1 ≥p1 · β(δ)M1 (.|p2) − g0 (p1, q1)w (q1) + g1 (p1, q1) f2 (p2) ∆.(5.4)

Indeed, if q1 ̸= p∗1, the definition of mechanism aw as well as the characterization of mechanism a2

in equations (5.1) imply that

u1 (h1) ≥ 1q1<p∗
1

f1 (q1)
q1

f2 (p2) ∆ + β(δ)M1 (h1|p2) − w (q1) ,

u1 (l1) ≥ 1q1>p∗
1

f1 (q1)
1 − q1

f2 (p2) ∆ + β(δ)M1 (l1|p2) − w (q1) .

Together with (5.3), the above inequalities imply (5.4) for q1 ̸= p∗1.
If q1 = p∗1, u′1 ∈ con

{
limp1↗p∗

1
aw

1 (p) , limp1↘p∗
1
aw

1 (p)
}

∩A1,βδ (p∗1, p2), which implies that

p1 · u1 ≥ min
u′

1∈con
{

limp1↗p∗
1

aw
1 (p),limp1↘p∗

1
aw

1 (p)
}
∩A1,βδ (p∗

1 ,p2)
p1 · u′1

=


p1
p∗

1
f1 (p∗1) f2 (p2) ∆ + p1 · β(δ)M1 (h1|p2) − p1

p∗
1
w (p∗1) p1 < p∗1

1−p1
1−p∗

1
f1 (p∗1) f2 (p2) ∆ + p1 · β(δ)M1 (l1|p2) − 1−p1

1−p∗
1
w (p∗1) p1 > p∗1.

Inequality (5.4) follows.
For future reference, let

D = min
(

1
p∗1
,

1
1 − p∗1

)
≤ g1 (p1, q1)
g0 (p1, q1) ,

and find κ > 0 such that D 1
1+κ > 1. Let C0 be the constant from Lemma 8 and let w∗0 (δ) = C0

κ (1 − δ)
for some small κ > 0.

Due to Lemma 8 and becauseu1 ∈ U1a
1 (p) ,

p1 · u1 ≥p1 · β(δ)M1 (.|p2)

+ max (0, g1 (p1, q1) f2 (p2) ∆ − g0 (p1, q1) f1 (q1) δw0 − g0 (p1, q1)ψ (q1)) .
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I estimate

p1 · u1 −
(
p1 · a2

1 (p) − β(δ)

β
w0f1 (p1)

)
≥ max (0, g1 (p1, q1) f2 (p2) ∆ − g0 (p1, q1) f1 (q1) δw0 − g0 (p1, q1)ψ (q1))

+ β(δ)

β
w0f1 (p1) .

Consider three cases:

• The above is larger than 0 for q1 = p∗1 due to the definitions of the functions, because β(δ) >

β > δβ, and due to ψ (p∗1) = 0.
• Suppose that q1 ̸= p∗1, and

g1 (p1, q1) f2 (p2) ∆ ≤ g0 (p1, q1) f1 (q1) δw0 + g0 (p1, q1)ψ (q1) ,

Using bounds on function ψ, I get

w0 ≥ g1 (p1, q1) f2 (p2) ∆
g0 (p1, q1) f1 (q1)

(
δ + 1

w∗
0
C (1 − δ)

) ≥ 1
1 + κ

Df2 (p2) ∆.

Hence,

p1 · u1 −
(
p1 · a2

1 (p) − β(δ)

β
w0f1 (p1)

)
≥f1 (p1)

[
β(δ)

β
w0 − f2 (p2) ∆

]
≥
[

1
1 + κ

D − 1
]
f1 (p1) f2 (p2) ∆ > 0.

• If q1 ̸= p∗1, and

g1 (p1, q1) f2 (p2) ∆ ≥ g0 (p1, q1) f1 (q1) δw0 + g0 (p1, q1)ψ (q1) ,

then

p1 · u1 −
(
p1 · a2

1 (p) − β(δ)

β
w0f1 (p1)

)
≥
(
β(δ)

β
f1 (p1) − δg0 (p1, q1) f1 (q1)

)
w0 − g0 (p1, q1) f1 (q1)ψ (q1)

+ (g1 (p1, q1) − f1 (p1)) g0 (p1, q1)
g1 (p1, q1) (f1 (q1) δw0 + ψ (q1))

≥f1 (p1)
(
β(δ)

β
− 1
D

(1 + κ)
)
w0 > 0.
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6. Conclusions

TBA

Appendix A. Proof of Theorem 1

Due to the definition of a Michael mechanism, it is enough to show that each payoff function can
be approximated by a sequence E (gn), where gn are games. Suppose that m is a payoff function.

Take ε > 0. Because m is a continuous function on a compact domain, it is uniformly continuous,
and there exists a decreasing function ϕ0 > 0 such that if d∆T (p, q) ≤ ϕ0, then dU (m (p) ,m (q)) ≤ 1

6ε.
For each ε > 0, and each p, use Abreu and Matsushima (1992) to find a two-player (no need for

a mediator) game gp such that dU (m (p) , E (gp) (p)) < 1
6ε. (Note that the measurability condition

is trivially satisfied in independent private value environment with different preferences of each type
over X. In fact, my model belongs to the Special case from Abreu and Matsushima (1992).) Because
gp implements E (g) (p) as a strict equilibrium, for each ε > 0, there is 0 < η (p) ≤ ϕ0 such that
dU (E (gp,ε) (p) , E (gp,ε) (q)) ≤ 1

6ε for each q such that d∆T (q, p) ≤ η (p, ε).
Let Vp =

{
q : d∆T (p, q) < 1

2η (p)
}

be an open ball on ∆T and consider a covering V = {{q : d∆T (p, q) ≤ η (p)} : p ∈ ∆T}.
As space ∆T is compact, there is a finite set P0 ⊆ ∆T and a subcover V∗ = {Vp : p ∈ P} of ∆T . Let
η0 = minp∈P η (p) > 0.

For each qi ∈ ∆Ti, let Qi (qi, ti) = qi (ti) −
∑

s q
2
i (s) be the Brier scoring rule. Let Q (q, p) =∑

i

∑
ti
pi (ti)Qi (qi, ti). It is well known that for each p, p is the unique solution to the maximization

problem maxq Q (q, p). I show that there exists a finite set P1 ⊆ ∆T such that for each p, each
q′ ∈ arg maxq∈P1 Q (q, p), d∆T (q′, p) ≤ 1

2η0.
For each p ∈ ∆T,let P0 (p) = {q : p ∈ Vq}. For each p ∈ ∆T , let P1 (p) = arg maxq∈Pε Q (q, p). Let

P (p) =
⋃

q∈P1(p) P0 (p). Then, for each q ∈ P (p), d∆T (p, q) ≤ η (q, ε). By the triangle’s inequality

dU (E (gq,ε) (p) ,m (p))

≤dU (E (gq,ε) (p) , E (gq,ε) (q)) + dU (E (gq,ε) (q) ,m (q)) + dU (m (q) ,m (p))

≤1
2ε.

I will construct a finite game g such that for each p ∈ ∆T ,

max
u∈E(g)(p)

min
v∈
⋃

q∈P (p)
E(gq,ε)(p)

dUE (u, v) ≤ ε

2 .

The above bound implies that dU (E (g) (p) ,m (p)) ≤ ε for each p.
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Let g0 be a finite game between the two players, in which type ti of each player i has an ex post
strict best response ai (ti), such that ai (ti) ̸= ai (t′i) for ti ̸= t′i.7 Assume that C ≥ 1 is an upper
bound on all payoffs u ∈ E (gr) (p), where r ∈ P0 ∪ {0}, for any p, maxi,ti |ui (ti)| ≤ C. Construct
game g:

(1) Action sets:
(a) player i chooses action a0,i ∈ Ti in game g0 and, for each q, action aq,i ∈ Aq in game gq,
(b) the mediator chooses action (pM , qM ) ∈ AM = {(p, q) : p ∈ P1, q ∈ P0 (p)},

(2) Payoffs:
(a) with probability ε

4C , player i receives payoffs gi (ti, t−i), and, with the remaining proba-
bility 1 − ε

4C , payoff gqM
(aqM ,i, aqM ,−i) − ε

4 ,
(b) the mediator receives payoff ε

8
∑

i Qi (pM,i, a0,i) .

The claim follows from straightforward calculations.

Appendix B. Equilibrium and existence in Menu of Mechanisms

I present a formal definition of equilibrium in a menu of mechanisms M . The definition follows
the definition from Pęski (2022), but it is adjusted for the two-sided incomplete information case. For
clarity, I present the definition in two steps. I start with a notion of equilibrium without randomization,
with a focus on the behavior. Next, I add randomization.

Definition 2. A tuple (u, p) ∈ U × ∆T is an equilibrium tuple in menu of mechanisms A, if there
exists a measurable strategy σi : U → ∆ (E ×A), measurable continuation payoffs v : E × A → U ,
and, if i = A, measurable belief function qi : M ×A → ∆Ti, such that the following conditions hold:

• payoff consistency:

ui (ti) =
∫
vi (ti|m, a)σi (d (m, a) |ti) for each ti ∈ Ti

u−i (t−i) =
∑

ti

pi (ti)
∫
v−i (t−i|m, a)σi (d (m, a) |tj) for each ti ∈ Ti

• best response: for each m, a,

vi (ti|m, a) ≤ ui (ti) for each ti ∈ Ti

• belief consistency: for each continuous function f : U ×M ×A → R, we have∑
ti

pi (ti)
∫
f (s,m, a) qi (ds|m, a)σi (d (m, a) |ti) =

∑
ti

pi (ti)
∫
f (ti,m, a)σi (d (m, a) |ti) ,

7For example, suppose that suppose that, with a probability 1
2 , player i is able to choose between (a) buying the good

at price li+hi
2 (the payment may, but it does not have to go to player 2), or (b) refusing to buy the good, in which

player 2 gets the good for free.
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• continuation payoffs: for each m, a, we have

v (m, a) ∈ m (qi (m, a)) .

We refer to the tuple (σ, q, v) as a (perfect Bayesian) equilibrium of menu of mechanisms MMi (A).
A tuple (u, p) is an equilibrium tuple with randomization device (e.t.r.d.) in menu A if there is a

probability distribution γ ∈ ∆U such that (u′, p) is an equilibrium tuple in menu A for γ-all u′ and
u =

∫
u′dγ (u′).

For each p ∈ ∆T , let

MMi (A) (p) = {u : (u, p) is e.t.r.d. in menu A}

= con {u : (u, p) is equilibrium tuple in menu A} .(B.1)

The equality in the second line is due to the Choquet Theorem.
The best response condition, together with the payoff consistency condition ensure that all pi-

positive probability types of player i best respond and receive payoffs as in u. The remaining 0-
probability types may either receive a lower payoff, or have no well-defined best response. This
feature is without loss of generality, as we can always modify the equilibrium object to ensure the
maximization for 0-probability types.

The next result establishes regularity properties (including the existence of equilibria) of menus of
mechanisms.

Proposition 3. For each closed set of mechanisms A ⊆ E is closed, the set of menus of mechanisms
{MMi (B) : B ⊆ A and B is compact} is closed as well. In particular, MMi (A) is a mechanism
(hence, non-empty-valued payoff correspondence), and, for any mechanism m, {MMi ({m,n}) : n ∈ E}
is a mechanism.

The proof is almost identical to an analogous proof in Pęski (2022). The key difference is that
Pęski (2022) works with Kakutani mechanisms, for which it is necessary to prove that they can be
approximated by a payoff function. Here, this step is not necessary, as the approximation by payoff
functions is ensured by the definition of a Michael mechanism.

Appendix C. Interim efficiency

The goal of this section is to characterize optimal payoff vectors under the assumption that each
player has two types. Denote

∆i = hi − li for each i and R = l2 − l1.

For each belief p = (p1, p2), denote pi (h) = pi = 1 − pi (l).
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An allocation is defined as probabilities (qxy
i )i,x,y (where qxy

i is interpreted as a conditional prob-
ability that player i gets the good conditionally on player i type being xi and player −i type being
y−i) and transfers τ l

i = τi and τh
i = τi + ∆τi such that two condition hold

• feasibility condition

(C.1) qxy
i + qyx

−i = 1 for each x, y, and

• ex ante budget balance:
∑

i τi + pi∆τi = 0.

Let qx
i =

∑
y q

xy
i p−i (y) .

The allocation is incentive compatible if ql
i ≤ qh

i and ∆τi ∈
[
ql

i∆i, q
h
i ∆i

]
. Say that ICi (h) con-

straint is binding if ∆τi = ql
i∆i and ICi (l) constraint is binding if ∆τi = qh

i ∆i.
In the rest of this section, I write Λi instead of Λi (hi) and take Λi (li) = 1 − Λi.

Proposition 4. Fix p and suppose that Λ1 = p1. For any Λ2 ∈ [0, 1], payoff vector u is Λ-optimal
under beliefs p if and only if u is a payoff vector obtained from some incentive compatible allocation
(qi, τi) such that the following conditions are satisfied:

(1) Optimal allocation:

qll
2 =1 − qll

1 =

1 Λ2 > p2 − (1 − p2) l2−l1
h2−l2

0 Λ2 < p2 − (1 − p2) l2−l1
h2−l2

,

qlh
2 =1 − qhl

1 =

1 Λ2 > p2 − (1 − p2) l2−h1
h2−l2

0 Λ2 < p2 − (1 − p2) l2−l1
h2−l2

,(C.2)

qhl
2 =1 − qlh

1 = 1,

qhh
2 =1 − qhh

1 =

1 max
(

1
p2

Λ2, 1
)

∆2 > h1 − l2

0 max
(

1
p2

Λ2, 1
)

∆2 < h1 − l2

.

,

(2) Incentive constraints: For each player i,
(a) if Λi > pi, then ICi (l) constraint is binding,
(b) if Λi < pi, then ICi (h) constraint is binding,

Corollary 2. Fix p weights Λ st. Λ1 = p1. Suppose that (qi) is an allocation that satisfies (C.2) and
payoff vector u is such that:

(1) Expected payoffs:
∑

i (1 − pi)ui (li) + piui (hi) = W (q) =
∑

i,ti,t−i
tiq

ti,t−i

i ,
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(2) Incentives: for each i

ui (hi) − ui (li) ∈
[
ql

i (hi − li) , qh
i (hi − li)

]
,

ui (hi) − ui (li) = ql
i (hi − li) if Λi < pi,

ui (hi) − ui (li) = qh
i (hi − li) if Λi > pi.

Then, payoff vector u is Λ-optimal.

Proof. Given Theorem 4, we need to verify that u can be obtained from incentive compatible allocation
(qi, τi) for some transfers τi. Define τx

i = xiqi − Xi. Feasibility conditions are satisfied due to the
expected payoff equality. □

C.1. Proof. Denote the expected payoffs of each type as

Li =ql
ili − τ l

i ,

Hi =qh
i hi − τ l

i − li
(
qh

i − ql
i

)
− αi∆i∆qi

=Li + ∆iq
h
i − αi∆i∆qi,

where we denote ∆qi = qh
i − ql

i.
The budget balance implies that the expected welfare must be equal to the expected utility from

allocations: ∑
i

Li +
∑

pi (Hi − Li) =
∑

(1 − pi) ql
ili +

∑
piq

h
i hi.

After substitutions and some algebra, we get∑
i

Li =
∑

i

[
(1 − pi) ql

ili + piq
h
i hi − pi∆iq

h
i + piαi∆i∆qi

]
=
∑

i

[
ql

ili + pi∆qi (li + αi∆i)
]
.(C.3)

Consider the welfare maximization problems with weights Λi ∈ [0, 1]:

max
∑

i

(1 − Λi)Li + ΛiHi st. feasibility and IC constraints.

Using the formula (C.3), the objective function can be rewritten as∑
i

(1 − Λi)Li + ΛiHi

=
∑

i

[
ql

ili + pi∆qi (li + αi∆i)
]

+
∑

i

Λi

(
∆iq

l
i + (1 − αi) ∆i∆qi

)
=
∑

i

[li + Λi∆i] ql
i +
∑

i

(pihi + (1 − αi) (Λi − pi) ∆i) ∆qi.



BARGAINING WITH MECHANISMS: TWO-SIDED INCOMPLETE INFORMATION 31

Thus, if ∆qi > 0, then αi = 0 if Λi > pi and αi = 1 if Λi < p. Conversely, if ∆qi = 0, the value αi

does not matter. Further, the above is equal to

=
∑

i

[li + Λi∆i] ql
i +
∑

i

(pili + Λi∆i − αi (Λi − pi) ∆i) ∆qi

=
∑

i

[(1 − pi) li + αi (Λi − pi) ∆i] ql
i +
∑

i

[pi (li + αi∆i) + (1 − αi) Λi∆i] qh
i

=
∑

i

[(1 − pi) li + αi (Λi − pi) ∆i]
(
(1 − p−i) qll

i + p−iq
lh
i

)
+
∑

i

[pi (li + αi∆i) + (1 − αi) Λi∆i]
(
(1 − p−i) qhl

i + p−iq
hh
i

)
.

Recalling the feasibility conditions, the above is equal to

= [(1 − p1) l1 + α1 (Λ1 − p1) ∆1]
(
1 − (1 − p2) qll

2 − p2q
hl
2
)

+ [p1h1 + (1 − α1) (Λ1 − p1) ∆1]
(
1 − (1 − p2) qlh

2 − p2q
hh
2
)

+ [(1 − p2) l2 + α2 (Λ2 − p2) ∆2]
(
(1 − p1) qll

2 + p1q
lh
2
)

+ [p2h2 + (1 − α2) (Λ2 − p2) ∆2]
(
(1 − p1) qhl

2 + p1q
hh
2
)

=l1 + Λ1∆1

+ qll
2 ((1 − p1) (1 − p2) l2 + (1 − p1)α2 (Λ2 − p2) ∆2 − (1 − p1) (1 − p2) l1 − (1 − p2)α1 (Λ1 − p1) ∆1)

+ qlh
2 (p1 (1 − p2) l2 + p1α2 (Λ2 − p2) ∆2 − p1 (1 − p2)h1 + (1 − p2) (1 − α1) (Λ1 − p1) ∆1)

+ qhl
2 ((1 − p1) p2h2 + (1 − p1) (1 − α2) (Λ2 − p2) ∆2 − (1 − p1) p2l1 − p2α1 (Λ1 − p1) ∆1)

+ qhh
2 (p1p2h2 + p1 (1 − α2) (Λ2 − p2) ∆2 − p1p2h1 − p2 (1 − α1) (Λ1 − p1) ∆1)

Because Λ1 = p1, the above simplifies to

= (1 − p1) l1 + p1h1

+ qll
2

(
l2 − l1 + α2

Λ2 − p2

1 − p2
∆2

)
(1 − p1) (1 − p2)

+ qlh
2

(
l2 − h1 + α2

Λ2 − p2

1 − p2
∆2

)
p1 (1 − p2)

+ qhl
2

(
h2 − l1 + (1 − α2) Λ2 − p2

p2
∆2

)
(1 − p1) p2

+ qhh
2

(
h2 − h1 + (1 − α2) Λ2 − p2

p2
∆2

)
p1p2.(C.4)

The result follows from direct calculations. For example, notice that the coefficient multiplying qhl
2 is

always positive, which implies that qhl
2 = 1 in Λ-optimal allocation.

C.2. Proof of Proposition 1. Proposition 1 follows from the following result:

Proposition 5. Suppose l1 < l2 < h1 < h2. Table 1 shows the good allocation, optimality weights,
and player 2 payoffs for all incentive compatible allocations that induce a solution of the maximization
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problem (4.1). The expected (ex ante) payoffs of player 1 in such allocations are equal to

E (p, x) = p1 · (xM1 (p2)) + f (p;x) ∆ (x) .

First, notice that, in each of the case listed in Table 1, the optimality of allocations for specified
weights follows from Proposition 4. Second, notice that, in each case, if player 2’s payoffs u2 (t2)
satisfy (??), then

W (q) −
∑
t2

p2 (t2)u2 (t2) =
∑
t1

p1 (t1)x1M1 (t1; p2) + f (p;x) ∆ (x) .

(I omit tedious but straightforward calculations.)
Third, in each case, I am going to find a payoff vector u such that (a) it satisfies the conditions of

Corollary 2, (b) the payoffs of each type of player 2 are equal to (??), and (c) u satisfies the random
monopoly payoff constraints of problem (4.1) for player 1 .

• Case A: Let u be such that (b) holds and

u1 (l1) = xM1 (l1; p2) and u1 (h1) = xM1 (h1; p2) + 1
p1
f (p;x) ∆ (x) .

The incentive conditions for player 1 are satisfied because x (1 − p2) ≤ ql
1 ≤ qh

1 ≤ 1 − p2, and

u1 (h1) − u1 (l1) = x (M1 (h1; p2) −M1 (l1; p2)) + 1
p1
f (p;x) ∆ (x)

= x (1 − p2) (h1 − l1) + (1 − x) (1 − p2) h2 − h1

h2 − l2
(l2 − l1)

∈ [x (1 − p2) (h1 − l1) , (1 − p2) (h1 − l1)] ,

where the upper bound is due to h2−h1
h2−l2

(l2 − l1) < h1 − l1. Similarly, for player 2,

u2 (h2) − u2 (l2) = x (M2 (h2; p2) −M2 (l2; p2)) +

p∗2 = l2 − l1
h2 − l1

Finally, notice that property (b) implies that either the random monopoly payoff constraints for this
type are binding or Λ2 (t2) = 0. Together with (c), it further implies that u is feasible for problem
(4.1). Finally, property (a) means that u satisfies the first -order conditions with Lagrangian multiplier
on the player 2 payoff constraints equal to Λ2. This concludes the proof of the Proposition.

C.3. Proof of Proposition 2. Proposition 2 follows from the following result:

Proposition 6. Suppose l1 < h1 < l2 < h2. Table 4 shows the good allocation and optimality
weights for all incentive compatible allocations that induce a solution of the maximization problem
(4.1). Additionally, the expected (ex ante) payoffs of player 1 are equal to

E (p, x) = p1 · (xM1 (p2)) + f (p;x) ∆ (x) , and
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for each type t2 of player, their payoff is equal to u2 (t2) =

(C.5)


x2M2 (h2; p) + x (h2 − l2) t2 = h2, p2 < p∗∗2

x2M2 (h2; p) + (x− p1) (h2 − l2) t2 = h2, p1 < x, p2 ≥ p∗∗2

x2M2 (t2; p) otherwise.

The proof follows the same lines as the proof of Proposition 1.

Appendix D. Mechanisms

In This Appendix, I describe mechanism(s) a1 in two different parameter cases. Mechanism a2 is
described in the main text.

D.1. Description.

Case l2 < h1. Define

p∗1 (x) = x

x+ (1 − x) h2−h1
h2−l2

and p∗∗1 (x) = x

x+ (1 − x) h2−h1
h2−l1

Case h1 < l2. Let
p∗1 (x) = x and p∗∗1 (x) = x

x+ (1 − x) h2−h1
h2−l1

.

D.2. Proof of Lemma 5. Consider mechanisms described in Appendix D. Condition (1) is trivially
satisfied. In order to verify condition (3), notice that for any i, any pi, any p−i < q−i, either
ai (pi, p−i|x) = ai (pi, q−i|x), or the payoffs of types of player −i are such that

ai
−i (l−i|pi, p−i, x) < ai

−i (l−i|pi, q−i, x) ,

ai
−i (hi|pi, p−i, x) > ai

−i (hi|pi, q−i, x) .

In the former case, information revelation does not add new equilibria. In the latter case, the in-
equalities insure that there is no equilibrium of the information revelation game in which posteriors
p−i < q−i are attained with a strictly positive probability.

Define

A∗i,x (p) =
{
u−i : ∃u′ ∈ Ai,x (p) st. u−i < u′−i

}
, and

E−i (Λ−i, p) = max
u∈A∗

i,x
(p)

Λ−i · (u− x−iM−i (.; pi)) .(D.1)

Set A∗i,x consists of all player −i’s payoffs that are strictly worse (type by type) than player −i payoffs
that allow player i to receive her random monopoly payoffs.
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A

(1 − x)M2 (h2) 0, xh2 0, xh2
(1 − x)M2 (l2)
+ (1 − x) p1

h2−h1
h2−l1

(l2 − l1)
x− (1 − x) p1

1−p1
h2−h1
h2−l1

,
(1 − x) p1

1−p1
h2−h1
h2−l1

l1
1,− (1 − x)h1

xM1 (l1) xM1 (h1)

p1

p2 − (1 − p2) p∗
2

1−p∗
2

B

(1 − x)M2 (h2)
+x (1 − p1) (h2 − l2) 0, xl2 0, xh2

(1 − x)M2 (l2) 0, xl2 1,− (1 − x)h1
xM1 (l1) xM1 (h1)

p1
p2

C

(1 − x)M2 (h2) 0, xh2 0, xh2
(1 − x)M2 (l2)
+x (1 − p1) (l2 − l1) 0, xl1 1,− (1 − x)h1

xM1 (l1) xM1 (h1)

p1
p2

0 1

1

p∗∗1 (x)

p∗2

A

B

C

Table 3. Payoffs, good allocation, and transfers in mechanism a1 in case h1 > l2.

Condition (2) is verified on a case by case basis. Below, let X denote the set of beliefs corresponding
to zone X. For any pair of belief profiles p = (pi, p−i) ∈ X, and p′ =

(
pi, p

′
−i

)
∈ X ′, I find an allocation

q : T → [0, 1], transfers τ : T → R, and optimality weights Λ such that

u′i (ti) =
∑

p′−i (t−i) (q (ti, t−i) ti + τ (ti, t−i)) ≤ xiMi

(
ti|p′−i

)
for each ti st. Λi (ti) > 0, and

u′−i (t−i) =
∑

pi (ti) ((1 − q (ti, t−i)) t−i − τ (ti, t−i)) ≤ a−i (t−i|x, p) for each t−i st. Λ−i (t−i) > 0,

and such that the resulting payoffs u′ = (u′i) are Λ-optimal under beliefs p′. The allocation q and
transfers τ are often taken as the allocation and transfers implementing payoff vector a−i (x, p),\, ie.
zone X allocation and transfers, which are described in tables in Section D. In such a case, the second
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A

(1 − x)M2 (h2) 0, xh2 0, xh2

(1 − x)M2 (l2) + (1 − x) p1
(h2−l2)(h1−l1)

h2−l1

x− (1 − x) p1
1−p1

h2−h1
h2−l1

,

(1 − x) p1
1−p1

h2−h1
h2−l1

l1
1,− (1 − x)h1

xM1 (l1) xM1 (h1)

p1,
p2 − (1 − p2) p∗

2
1−p∗

2

B
(1 − x)M2 (h2) + x (1 − p1) (h2 − l2) 0, xl2 0, xh2
(1 − x)M2 (l2) 0, xl2 x, 0

xM1 (l1) xM1 (h1)

p1,

p2 − (1 − p2) p∗∗
2

1−p∗∗
2

C
(1 − x)M2 (h2) 0, xh2 0, xh2
(1 − x)M2 (l2) + x (1 − p1) (h1 − l1) 0, xl1 1,− (1 − x)h1

xM1 (l1) xM1 (h1)

p1,
p2 − (1 − p2) p∗

2
1−p∗

2

D
(1 − x)M2 (h2)+x (h2 − l2) 0, xl2 0, xl2
(1 − x)M2 (l2) 0, xl2 0, xl2

xM1 (l1) xM1 (h1)

p1,
0

0 1

1

p∗∗1 (x)

p∗2

p∗∗2

A

B

C

D

Table 4. Payoffs, good allocation, and transfers in mechanism a1 in case h1 < l2.

set of inequalities above are satisfied trivially. Notice that cases where X = X ′, i.e., the two belief
profiles belong to the same zone, can be ignored due to the fact that payoffs in mechanism a (x) are
interim efficient and payoffs a−i do not depend on p−i within a zone.

Let u = a−i (t−i|x, p). Consider the following cases:

• case l2 < h1, i = 1:
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– p ∈ A, p′ ∈ B: Let q =
[

0 0
0 1

]
8, τ =

[
γh2 + (x− γ) l2 xh2

γl1 + (x− γ) l2 − (1 − x)h1

]
, where

γ = (1 − x) p1
1−p1

h2−h1
h2−l1

, and Λ2 = 0. γ is the probability that player 1 gets the good
conditionally on types (l1, l2) in mechanism a1 and it is chosen so that the incentive
constraint of type h2 is binding. (q, τ) are Λ2-optimal for beliefs p′. Moreover, one verifies
that that u′2 (l2) = u2 (l2), u′1 (l1) ≤ xl2 for each p′2 ≤ p∗∗2 , and u′1 (h1) = xM1 (h1|p′2),

– p ∈ C, p′ ∈ B: Let q and τ be the zone C allocation and transfers, and Λ2 = p′2. (q, τ)
are Λ2-optimal for beliefs p′2 ≤ p∗2. Moreover, u′1 (l1) = x ((1 − p′2) l1 + p′2h2) ≤ xl2 and
u′1 (h1) = xM1 (h1|p′2) for all p′2 ≤ p∗2,

– p ∈ B, p′ ∈ A ∪ C: Let q and τ be the zone B allocation and transfers, and Λ2 = p′2.
(q, τ) are Λ2-optimal for beliefs p′2 ≥ p∗2. Moreover, u′1 (l1) = xl2 ≤ xM1 (l1|p′2) and
u′1 (h1) = u1 (h1) for all p′2 ≥ p∗2,

• case l2 < h1, i = 2:
– p ∈ A, p′ ∈ C: Let q and τ be the zone A allocation and transfers for p1 = p∗1 (x),

i.e., q =
[

0 0
0 1

]
, τ =

[
xh2 xh2

xl1 − (1 − x)h1 + γ

]
, where γ = x

1−p∗
1(x)

p∗
1(x) (l2 − l1), and

Λ2 = p2. γ is chosen so that the payoff of type t2 is smaller than his random monopoly
payoff (1 − x)M2 (l2|p′1) for all beliefs p′1 ≥ p∗1 (x). (q, τ) are Λ2-optimal for beliefs
p′1 ≥ p∗1 (x). Moreover, u1 = u′1, u′2 (h2) = (1 − x)h2 = u2 (h2), and u′2 (l2) ≤ u2 (l2) for
p′1 ≥ p∗1 (x),

– p ∈ B, p′ ∈ C: Let q and τ be the zone B allocation and transfers, and Λ2 = 0.
(q, τ) are Λ2-optimal for beliefs p′. Moreover, u′2 (l2) = (1 − x)M2 (l2|p′1) and u′2 (h2) =
(1 − x)M2 (h2|p′1) for p′1 ≥ p∗1 (x),

– p ∈ C, p′ ∈ A ∪ B: Let q and τ be the zone C allocation and transfers, and Λ2 = p′2.
(q, τ) are Λ2-optimal for beliefs p′ for a relaxed problem, where the incentive condition
of player 2 type h2 is ignored. Moroever, u′2 (t1) = (1 − x)M2 (t2|p′1) for each t2,

• case l2 > h1, i = 1:

– p ∈ A, p′ ∈ B ∪ D: Let q =
[

0 0
0 1

]
9, τ =

[
γh2 + (x− γ) l2 xh2

γl1 + (x− γ) l2 − (1 − x)h1

]
, where

γ = (1 − x) p1
1−p1

h2−h1
h2−l1

, and Λ2 = 0. γ is the probability that player 1 gets the good
conditionally on types (l1, l2) in mechanism a1 and it is chosen so that the incentive

8Allocation and transfers are presented in a matrix with cells corresponding to type profiles
[

l1h2 h1h2
l1l2 h1l2

]
and

contents of the cells correspond to, respectively, allocation or transfer to player 1.

9Allocation and transfers are presented in a matrix with cells corresponding to type profiles
[

l1h2 h1h2
l1l2 h1l2

]
and

contents of the cells correspond to, respectively, allocation or transfer to player 1.
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constraint of type h2 is binding. (q, τ) are Λ2-optimal for beliefs p′. Moreover, one verifies
that that u′2 (l2) = u2 (l2), u′1 (l1) ≤ xl2 for each p′2 ≤ p∗∗2 , and u′1 (h1) = xM1 (h1|p′2),

– p ∈ C, p′ ∈ B ∪ D: Let q and τ be the zone C allocation and transfers, and Λ2 = p′2.
(q, τ) are Λ2-optimal for beliefs p′2 ≤ p∗2. Then, u′1 (l1) = x ((1 − p′2) l1 + p′2h2) ≤ xl2 and
u′1 (h1) = u1 (h1) ≤ xM1 (h1|p′2) for all p′2 ≤ p∗2,

– p ∈ B, p′ ∈ A ∪ C: Let q and τ be the zone B allocation and transfers, and Λ2 =
p′2 − (1 − p2) p∗∗

2
1−p∗∗

2
. (q, τ) are Λ2-optimal for beliefs p′2 ≥ p∗2. Moreover, u′1 (l1) = xl2 ≤

xM1 (l1|p′2) and u′1 (h1) = u1 (h1) for all p′2 ≥ p∗2,
– p ∈ B, p′ ∈ D: Let q and τ be the zone D allocation and transfers, and Λ2 = 0.

(q, τ) are Λ2-optimal for beliefs p′2 ≤ p∗∗2 . Moreover, u′1 (l1) = xM1 (l1|p′2) and u′1 (h1) =
xM1 (l1|p′2) for all p′2 ≥ p∗2. Finally, u′2 (l2) = u2 (l2),

– p ∈ D, p′ ∈ A ∪ B ∪ C: Let q and τ be the zone D allocation and transfers, and
Λ2 = p1. (q, τ) are Λ2-optimal for any beliefs p′2. Moreover, u′1 (l1) = xl2 ≤ xM1 (l1|p′2)
and u′1 (h1) = xl2 ≤ xM1 (h1|p′2) for all p′2 ≥ p∗2,

• case l2 > h1, i = 2:
– p ∈ A, p′ ∈ C: Let q and τ be the zone A allocation and transfers for p1 = p∗1 (x), i.e.,

q =
[

0 0
0 1

]
, τ =

[
xh2 xh2

xl1 − (1 − x) l1

]
, and Λ2 = p′2 − (1 − p′2) p∗

2
1−p∗

2
. (q, τ) are Λ2-

optimal for beliefs p′1 ≥ p∗1 (x). Moreover, u1 = u′1, u′2 (h2) = (1 − x)h2 = u2 (h2), and
u′2 (l2) ≤ u2 (l2) for p′1 ≥ p∗1 (x),

– p ∈ B, p′ ∈ C: Let q and τ be the zone B allocation and transfers, and Λ2 = 0. (q, τ) are
Λ2-optimal for beliefs p′. Moreover, u′2 (l2) = (1 − x)M2 (l2|p′1) for all beliefsp′1,

– p ∈ C, p′ ∈ A ∪ B: Let q and τ be the zone C allocation and transfers, and Λ2 =
p′2 − (1 − p′2) p∗∗

2
1−p∗∗

2
. (q, τ) are Λ2-optimal for beliefs p′ for a relaxed problem, where the

incentive condition of player 2 type h2 is ignored. Moreover, u′2 (t1) = (1 − x)M2 (t2|p′1)
for each t2,
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